Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
1.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561840

RESUMO

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Assuntos
Vesículas Extracelulares , Atrofia Muscular Espinal , Humanos , Criança , Camundongos , Animais , Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Neurônios Motores , Células-Tronco/metabolismo , Vesículas Extracelulares/metabolismo
2.
J Neurol ; 271(2): 986-994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907725

RESUMO

OBJECTIVE: To describe a new phenotype associated with a novel variant in BAG3: autosomal dominant adult-onset distal hereditary motor neuronopathy. METHODS: This study enrolled eight affected individuals from a single family and included a comprehensive evaluation of the clinical phenotype, neurophysiologic testing, muscle MRI, muscle biopsy and western blot of BAG3 protein in skeletal muscle. Genetic workup included whole exome sequencing and segregation analysis of the detected variant in BAG3. RESULTS: Seven patients developed slowly progressive and symmetric distal weakness and atrophy of lower limb muscles, along with absent Achilles reflexes. The mean age of onset was 46 years. The neurophysiological examination was consistent with the diagnosis of distal motor neuronopathy. One 57-year-old female patient was minimally symptomatic. The pattern of inheritance was autosomal dominant, with one caveat: one female patient who was an obligate carrier of the variant died at the age of 73 years without exhibiting any muscle weakness. The muscle biopsies revealed neurogenic changes. A novel heterozygous truncating variant c.1513_1514insGGAC (p.Val505GlyfsTer6) in the gene BAG3 was identified in all affected family members. CONCLUSIONS: We report an autosomal dominant adult-onset distal hereditary motor neuronopathy with incomplete penetrance in women as a new phenotype related to a truncating variant in the BAG3 gene. Our findings expand the phenotypic spectrum of BAG3-related disorders, which previously included dilated cardiomyopathy, myofibrillar myopathy and adult-onset Charcot-Marie-Tooth type 2 neuropathy. Variants in BAG3 should be considered in the differential diagnosis of distal hereditary motor neuronopathies.


Assuntos
Doença de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Linhagem , Doença de Charcot-Marie-Tooth/genética , Fenótipo , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Atrofia Muscular Espinal/patologia , Mutação/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética
3.
Ann Neurol ; 95(3): 596-606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054838

RESUMO

OBJECTIVE: Spinal and bulbar muscular atrophy (SBMA) is characterized by slow, progressive bulbar and limb muscle weakness; however, the pattern of progression of muscle fat infiltration remains unclear. We assessed the progression of muscle involvement in 81 patients with SBMA using whole-body muscle magnetic resonance imaging (MRI), alongside clinical and laboratory findings. METHODS: This prospective study included patients with genetically confirmed SBMA who underwent whole-body muscle MRI. We analyzed muscle fat infiltration and the pattern of involved muscles using cluster analysis, visualizing the sequential progression of fat infiltration. Muscle clusters demonstrated correlation with clinical scales and laboratory findings. Additionally, linear regression analysis was performed to identify the MRI section most strongly associated with 6-minute walk test (6MWT). RESULTS: We included 81 patients with SBMA (age = 54.3 years). After categorizing the patients into 6 clusters based on the pattern of muscle fat infiltration, we observed that muscle involvement began in the posterior calf and progressed to the posterior thigh, pelvis, trunk, anterior thigh, medial thigh, anterior calf, and upper extremity muscles. These muscle clusters correlated significantly with disease duration (τ = 0.47, p < 0.001), 6MWT (τ = -0.49, p < 0.001), and serum creatinine level (τ = -0.46, p < 0.001). The whole-body MRI indicated the thigh as the section most significantly correlated with 6MWT. INTERPRETATION: We used whole-body muscle MRI to determine the sequential progression of the fat infiltration in SBMA. Our findings may enable the identification of objective and reliable imaging outcome measures in the study of the natural history or future clinical trials of SBMA. ANN NEUROL 2024;95:596-606.


Assuntos
Atrofia Bulboespinal Ligada ao X , Atrofia Muscular Espinal , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Atrofia Bulboespinal Ligada ao X/diagnóstico por imagem , Atrofia Bulboespinal Ligada ao X/patologia , Atrofia Muscular/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/patologia , Imageamento por Ressonância Magnética
4.
Nat Commun ; 14(1): 8043, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114482

RESUMO

The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient's pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Humanos , Junção Neuromuscular/patologia , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular Espinal/patologia , Músculo Esquelético/patologia , Células-Tronco Pluripotentes Induzidas/patologia
5.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 1-8, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953591

RESUMO

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets. We previously described a motoneuron-specific death pathway elicited by the Fas death receptor, whereby vulnerable ALS motoneurons show an exacerbated sensitivity to Fas activation. However, the mechanisms that drive the loss of SMA motoneurons remains poorly understood. Here, we describe an in vitro model of SMA-associated degeneration using primary motoneurons derived from Smn2B/- SMA mice and show that Fas activation selectively triggers death of the proximal motoneurons. Fas-induced death of SMA motoneurons has the molecular signature of the motoneuron-selective Fas death pathway that requires activation of p38 kinase, caspase-8, -9 and -3 as well as upregulation of collapsin response mediator protein 4 (CRMP4). In addition, Rho-associated Kinase (ROCK) is required for Fas recruitment. Remarkably, we found that exogenous activation of Fas also promotes axonal elongation in both wildtype and SMA motoneurons. Axon outgrowth of motoneurons promoted by Fas requires the activity of ERK, ROCK and caspases. This work defines a dual role of Fas signaling in motoneurons that can elicit distinct responses from cell death to axonal growth.


Assuntos
Esclerose Amiotrófica Lateral , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Axônios/patologia
6.
Am J Med Genet A ; 191(9): 2428-2432, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462082

RESUMO

Mitogen-activated protein kinase 8-interacting protein 3 gene (MAPK8IP3) encodes the c-Jun-amino-terminal kinase-interacting protein 3 (JIP3) and is involved in retrograde axonal transport. Heterozygous de novo pathogenic variants in MAPK8IP3 result in a neurodevelopmental disorder with or without brain abnormalities and possible axonal peripheral neuropathy. Whole-exome sequencing was performed on an individual presenting with severe congenital muscle hypotonia of neuronal origin mimicking lethal spinal muscular atrophy. Compound heterozygous rare variants (a splice and a missense) were detected in MAPK8IP3, inherited from the healthy parents. Western blot analysis in a muscle biopsy sample showed a more than 60% decrease in JIP3 expression. Here, we suggest a novel autosomal recessive phenotype of a lower motor neuron disease caused by JIP3 deficiency.


Assuntos
Atrofia Muscular Espinal , Doenças Musculares , Anormalidades Musculoesqueléticas , Humanos , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Fenótipo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
7.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37498175

RESUMO

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Neurônios Motores/metabolismo , Desmina/genética , Desmina/metabolismo , Elastina/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Terapia Genética , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
9.
J Neuromuscul Dis ; 10(4): 493-503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125560

RESUMO

BACKGROUND: 5q Spinal Muscular Atrophy (SMA) is a prototypical lower motor neuron disorder. However, the characteristic early motor impairment raises the question on the scope of brain involvement with implications for further investigations on the brain as a potential therapeutic target. OBJECTIVE: To review changes across the SMA clinical spectrum reported on brain magnetic resonance imaging (MRI). METHODS: We conducted a scoping review of existing literature on PubMed and EMBASE. Two reviewers searched and retrieved relevant articles on magnetic resonance brain imaging in individuals with SMA censoring to April 2022. Full-text articles published in peer-reviewed journals or abstracts accepted to conferences in English and French were included. RESULTS: Twelve articles were identified describing a total of 39 patients [age range: 11 days to 41 years old, type 0 (n = 5), type 1 (n = 4), type 2 (n = 2), type 3 (n = 22), type 4 (n = 6)]. All reported structural changes and did not explore other MRI modalities. In individuals with infantile onset SMA, cortical and subcortical brain abnormalities in white matter, basal ganglia, thalamus, hippocampus, and high intensity areas around lateral ventricles and thalami were reported over time. In individuals with later-onset SMA, reduced cerebellar and lobular volume were observed as well as increased grey matter density in motor areas. CONCLUSIONS: Limited data on brain imaging in SMA highlights both cortical and subcortical involvement in SMA, supporting the hypothesis that changes are not restricted to lower motor neuron pathways. Further studies are needed to determine the extent and prevalence of structural and functional brain changes across SMA types.


Assuntos
Doença dos Neurônios Motores , Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Humanos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Atrofias Musculares Espinais da Infância/tratamento farmacológico
10.
Neurosci Res ; 194: 58-65, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146794

RESUMO

Lower motor neuron degeneration is the pathological hallmark of spinal muscular atrophy (SMA), a hereditary motor neuron disease caused by loss of the SMN1 gene and the resulting deficiency of ubiquitously expressed SMN protein. The molecular mechanisms underlying motor neuron degeneration, however, remain elusive. To clarify the cell-autonomous defect in developmental processes, we here performed transcriptome analyses of isolated embryonic motor neurons of SMA model mice to explore mechanisms of dysregulation of cell-type-specific gene expression. Of 12 identified genes that were differentially expressed between the SMA and control motor neurons, we focused on Aldh1a2, an essential gene for lower motor neuron development. In primary spinal motor neuron cultures, knockdown of Aldh1a2 led to the formation of axonal spheroids and neurodegeneration, reminiscent of the histopathological changes observed in human and animal cellular models. Conversely, Aldh1a2 rescued these pathological features in spinal motor neurons derived from SMA mouse embryos. Our findings suggest that developmental defects due to Aldh1a2 dysregulation enhances lower motor neuron vulnerability in SMA.


Assuntos
Atrofia Muscular Espinal , Camundongos , Humanos , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Modelos Animais de Doenças , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo
11.
Brain Pathol ; 33(5): e13162, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218083

RESUMO

Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.


Assuntos
Astrócitos , Atrofia Muscular Espinal , Camundongos , Animais , Astrócitos/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Neurônios Motores/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética
12.
Commun Biol ; 6(1): 560, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231125

RESUMO

Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.


Assuntos
Lipogranulomatose de Farber , Atrofia Muscular Espinal , Epilepsias Mioclônicas Progressivas , Humanos , Camundongos , Animais , Lipogranulomatose de Farber/genética , Lipogranulomatose de Farber/metabolismo , Lipogranulomatose de Farber/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Esfingolipídeos/metabolismo , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/patologia , Fenótipo
13.
Neuron ; 111(9): 1423-1439.e4, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863345

RESUMO

Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.


Assuntos
Atrofia Muscular Espinal , Animais , Camundongos , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Fatores de Transcrição/metabolismo
14.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607273

RESUMO

Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 "cluster-like" formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.


Assuntos
Actinas , Proteínas de Membrana , Proteínas dos Microfilamentos , Atrofia Muscular Espinal , Receptor trkB , Humanos , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptor trkB/metabolismo
15.
Proteins ; 91(6): 739-749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625206

RESUMO

The G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10. We find that the structural properties, potential of mean force surfaces, and principal component analysis show stark differences between these two proteins. These results are important for a better pathology, biochemistry and structural biology understanding of CHCHD10 and its G66V genetic variant and it is likely that these reported structural properties are important for designing more efficient treatments for the Jokela type of spinal muscular atrophy disease.


Assuntos
Proteínas Mitocondriais , Atrofia Muscular Espinal , Humanos , Proteínas Mitocondriais/química , Mutação , Mitocôndrias/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células HeLa
16.
J Neuroimaging ; 33(3): 393-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36627228

RESUMO

BACKGROUND AND PURPOSE: Novel light- and sound-based technologies like multispectral optoacoustic tomography (MSOT) with co-registered reflected-ultrasound computed tomography (RUCT) could add additional value to conventional ultrasound (US) for disease phenotyping in pediatric spinal muscular atrophy (SMA). The aim of this study was to investigate the quality of RUCT compared to US for qualitative and quantitative assessment of imaging neuromuscular disorders. METHODS: Subanalyzing the MSOT SMA study, 288 RUCT and 276 US images from 10 SMA patients (mean age 9.0 ± 3.7) and 10 gender- and age-matched healthy volunteers (HV; mean age 8.7 ± 4.3) were analyzed for quantitative (grayscale levels [GSLs]) and qualitative (echogenicity, distribution pattern, Heckmatt scale, and muscle texture) muscle changes. RUCT and US measures were further correlated with clinical standard motor outcomes. RESULTS: Quantitative agreement using GSLs revealed significantly higher GSLs in muscles of SMA patients compared to healthy muscles in both techniques (US mean GSL [SD] SMA vs. HV: 110.70 [27.8] vs. 68.85 [19.2], p < .0001; RUCT mean GSL [SD] SMA vs. HV: 91.81 [21.8] vs. 59.86 [8.2], p < .0001) with good correlation with motor outcome tests, respectively. Qualitative agreement between methods for muscle composition was excellent for differentiation of pathological versus healthy muscles, echogenicity, and distribution pattern, moderate for Heckmatt scale, and poor for muscle texture. CONCLUSIONS: The data suggest that RUCT may allow the assessment of basic qualitative and quantitative measures for muscular diseases with comparable results to conventional US.


Assuntos
Atrofia Muscular Espinal , Humanos , Criança , Pré-Escolar , Adolescente , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/patologia , Músculo Esquelético/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Ultrassonografia
17.
J Integr Neurosci ; 22(6): 167, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38176936

RESUMO

In the past, the spinal cord was considered a hard-wired network responsible for spinal reflexes and a conduit for long-range connections. This view has changed dramatically over the past few decades. It is now recognized as a plastic structure that has the potential to adapt to changing environments. While such changes occur under physiological conditions, the most dramatic alterations take place in response to pathological events. Many of the changes that occur following such pathological events are maladaptive, but some appear to help adapt to the new conditions. Although a number of studies have been devoted to elucidating the underlying mechanisms, in humans and animal models, the etiology and pathophysiology of various diseases impacting the spinal cord are still not well understood. In this review, we summarize current understanding and outstanding challenges for a number of diseases, including spinal muscular atrophy (SMA), amyotrophic laterals sclerosis (ALS), and spinal cord injury (SCI), with occasional relations to stroke. In particular, we focus on changes resulting from SCI (and stroke), and various influencing factors such as cause, site and extent of the afflicted damage.


Assuntos
Esclerose Amiotrófica Lateral , Atrofia Muscular Espinal , Traumatismos da Medula Espinal , Acidente Vascular Cerebral , Animais , Humanos , Medula Espinal , Atrofia Muscular Espinal/patologia , Traumatismos da Medula Espinal/patologia , Modelos Animais de Doenças , Acidente Vascular Cerebral/patologia
18.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555538

RESUMO

Muscle loss and weakness after a burn injury are typically the consequences of neuronal dysregulation and metabolic change. Hypermetabolism has been noted to cause muscle atrophy. However, the mechanism underlying the development of burn-induced motor neuropathy and its contribution to muscle atrophy warrant elucidation. Current therapeutic interventions for burn-induced motor neuropathy demonstrate moderate efficacy and have side effects, which limit their usage. We previously used a third-degree burn injury rodent model and found that irisin-an exercise-induced myokine-exerts a protective effect against burn injury-induced sensory and motor neuropathy by attenuating neuronal damage in the spinal cord. In the current study, spinal irisin gene delivery was noted to attenuate burn injury-induced sciatic nerve demyelination and reduction of neuromuscular junction innervation. Spinal overexpression of irisin leads to myelination rehabilitation and muscular innervation through the modulation of brain-derived neurotrophic factor and glial-cell-line-derived neurotrophic factor expression along the sciatic nerve to the muscle tissues and thereby modulates the Akt/mTOR pathway and metabolic derangement and prevents muscle atrophy.


Assuntos
Queimaduras , Atrofia Muscular Espinal , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Axônios/metabolismo , Queimaduras/complicações , Queimaduras/terapia , Queimaduras/patologia , Fibronectinas/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevenção & controle , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Neuropatia Ciática/patologia , Animais
19.
Muscle Nerve ; 66(5): 631-638, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36050898

RESUMO

INTRODUCTION/AIMS: Spinal muscular atrophy (SMA) is an inherited neuromuscular disease caused by survival motor neuron (SMN) protein deficiency. Insulin-like growth factor-I (IGF-I) is a myotrophic and neurotrophic factor that has been reported to be dysregulated in in vivo SMA model systems. However, detailed analyses of the IGF-I system in SMA patients are missing. In this study, we analyzed the components of the IGF-I system in serum and archived skeletal muscle biopsies of SMA patients. METHODS: Serum IGF-I, IGF binding protein (IGFBP)-3, and IGFBP-5 levels were analyzed in 11 SMA patients and 13 healthy children by immunoradiometric and enzyme-linked immunosorbent assays. The expression of IGF-I, IGF-I receptor, and IGFBP-5 proteins was investigated by immunofluorescence analysis in the archived skeletal muscle biopsies of nine SMA patients, six patients with non-SMA-related neuromuscular disease and atrophic fibers in muscle biopsy, and four controls. RESULTS: A significant decrease in IGF-I levels (mean ± SD: -1.39 ± 1.46 vs. 0.017 ± 0.83, p = .02) and increase in IGFBP-5 levels (mean ± SD: 2358.5 ± 1617.4 ng/mL vs. 1003.4 ± 274.3 ng/mL, p = .03) were detected in serum samples of SMA patients compared to healthy controls. Increased expression of IGF-I, IGF-I receptor, and IGFBP-5 was detected in skeletal muscle biopsies of SMA patients and non-SMA neuromuscular diseases, indicating atrophy-specific alterations in the pathway. DISCUSSION: Our findings suggested that the components of the IGF-I system are altered in SMA patients at both the systemic and tissue-specific levels.


Assuntos
Fator de Crescimento Insulin-Like I , Atrofia Muscular Espinal , Criança , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1 , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Atrofia Muscular Espinal/patologia , Fatores de Crescimento Neural/metabolismo
20.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099045

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder due to degeneration of spinal cord motor neurons caused by deficiency of the ubiquitously expressed SMN protein. Here, we present a retinal vascular defect in patients, recapitulated in SMA transgenic mice, driven by failure of angiogenesis and maturation of blood vessels. Importantly, the retinal vascular phenotype was rescued by early, systemic SMN restoration therapy in SMA mice. We also demonstrate in patients an unfavorable imbalance between endothelial injury and repair, as indicated by increased circulating endothelial cell counts and decreased endothelial progenitor cell counts in blood circulation. The cellular markers of endothelial injury were associated with disease severity and improved following SMN restoration treatment in cultured endothelial cells from patients. Finally, we demonstrated autonomous defects in angiogenesis and blood vessel formation, secondary to SMN deficiency in cultured human and mouse endothelial cells, as the underlying cellular mechanism of microvascular pathology. Our cellular and vascular biomarker findings indicate microvasculopathy as a fundamental feature of SMA. Our findings provide mechanistic insights into previously described SMA microvascular complications, and highlight the functional role of SMN in the periphery, including the vascular system, where deficiency of SMN can be addressed by systemic SMN-restoring treatment.


Assuntos
Células Endoteliais , Atrofia Muscular Espinal , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Neurônios Motores/metabolismo , Camundongos Transgênicos , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...